Smart ‘「ress

PST... and PST...-R ELECTRONIC PRESSURE SWITCHES

Abstract

APPLICATION Honeywell FEMA's PST and PST...-R series Electronic Pressure Switches require adjustment (configuration and parameterization) in only two modes (the basic mode and the expert mode) and are suitable for an extremely wide range of applications, including the precision-adjustment and monitoring of system pressures in the field of plant construction, fluidics, process technology, and pneumatics, as well as in the monitoring and control of pumps and compressors. Due to their monitored sensors with a standardized warning output, these devices are suitable for use in manufacturing lines in the automotive industry as well as in the area of machine tool construction. These switches provide sufficient accuracy (0.5% of final value) for measurement monitoring in many laboratory applications.

FEATURES

Housing and back
Max. ambient temp.
Storage temperature
Temperature, medium
Relative air humidity
Accuracy, total
Medium temp. drift
Total weight
polybutylene terephtalate (PBT)
$-20 . . .+60^{\circ} \mathrm{C}$
$-35 \ldots+80^{\circ} \mathrm{C}$
$-20 \ldots+100^{\circ} \mathrm{C}$
$0 . .95 \%$, non-condensing 0.5% of final value
0.3% per 10 K (0.5% per 10 K in case of 250/400/600 mbar) 380 grams
Parts in contact with medium
$\begin{array}{ll}\text { High-pressure versions } & 1.4571+1.4542 \\ \text { Low-pressure / flush } & 1.4571+1.4435\end{array}$
Process connection
Manometer connection
Flush connection
Electrical connection
PST series
PST...-R series
Protection class
Protection type
Climate class
Power supply
EMC
Switch outputs (all versions)
Open-Collector outputs Two; configurable as high-side/ low-side or as push-pull switches, max. load: $250 \mathrm{~mA} / 15$... 36 Vdc
Reaction time
Switching difference (SP and RP) configurable
Relay outputs (PST...-R series)
Contact type 1 switch-over contact
Min. electrical lifetime 250,000 switching cycles
Switching performance, gold contacts ($\mathrm{AgSnO}_{2}+\mathrm{Au}$)
AC1 (resistive) $\quad 1.5 \mathrm{VA}(24 \mathrm{Vdc} / 60 \mathrm{~mA}, 230 \mathrm{Vac} /$
6.5 mA)

AC15 (inductive) unsuitable
Max. switch-on current 60 mA for $<5 \mathrm{~ms}$
Min. switching perf. $\quad 50 \mathrm{~mW}$ (either $>5 \mathrm{~V}$ or $>2 \mathrm{~mA}$)
Switching performance, silver contacts (AgSnO_{2})
AC1 (resistive) $\quad 690$ VA ($230 \mathrm{Vac} / 3 \mathrm{~A}$)
AC15 (inductive) $\quad 230 \mathrm{VA}(230 \mathrm{Vac} / 1 \mathrm{~A})$
Max. switch-on current 30 A for $<5 \mathrm{~ms}$
Min. switching perf. $\quad 500 \mathrm{~mW}$ (> 12 V or $>10 \mathrm{~mA}$)
Diagnostic output
Output configuration
warning output (plug 2),
max. $20 \mathrm{~mA}, 15 . . .36 \mathrm{Vdc}$
Transmitter output (analog output)
Voltage / current
$0 . . .10 \mathrm{~V}$ and $4 \ldots 20 \mathrm{~mA}$, configurable in expert mode
Transient response

VARIANTS

The electronic pressure switches are available in two variants, easily distinguishable by the number of M12 plugs present on the rear side.

PST... Series

The devices of this series provide both switching functionality and transmitting functionality.
plug 2:

Fig. 1. PST... Series, rear view of housing

PST...-R Series

Like PST... Series devices, the devices of this series provide switching and transmitting functionality, but also relaying functionality.

Fig. 2. PST...-R Series, rear view of housing

FUNCTION

The PST and PST...R Electronic Pressure Switches are screwed directly into the pressure line or the boiler's connection nozzle. When monitoring gaseous media and high-viscosity liquids, G1/2" standard manometer can be used. In the case of low-viscosity and roiled liquids, G3/4" (flush) process connections must be used.

The LCD display screen indicates the pressure as a 4-digit digital value and as an analog value (bar graph).

Two LED's provide information on the switching status of the outputs and on the alarm status.

The device is configured and parameterized using the large rotary/push button. The user can move from screen to screen and enter values and/or change configurations by rotating the button. Values and configurations are confirmed and/or stored by pressing this button.

Parameterization and configuration are performed in only two modes (the basic mode and the expert mode).

Basic Mode (Parameterization)

- Outputs 1 and 2: Adjustment of the switch-points (SP) and reverse switch-points (RP).
- Adjustment of the lower (ZERO) and upper (FSO = "full-scale output") reference values for limiting the analog output signal to a defined pressure range.
- Setting of a filter value in a range of $0 . . .95 \%$ (ATT).
- When locked, can be unlocked by entering a CODE.

Expert Mode (Configuration)
 Output 1 (OUT1)

- Configurable as a maximum or minimum monitor.
- Configurable as a window monitor.
- Configurable as normally-open or normally-closed.
- Configurable as low-side/high-side switch or as pushpull switch.

Output 2 (OUT2)

- Configurable as a maximum or minimum monitor.
- Configurable as a window monitor.
- Configurable as normally-open or normally-closed.
- Configurable as low-side/high-side switch or as pushpull switch.
- Configurable as a warning output (max. 250 mA).

Analog Output (AOUT)

- Configurable as a $0 . . .10 \mathrm{~V} / 10 \ldots 0 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA} /$ $20 . .4 \mathrm{~mA}$ output (default setting: $0 . .10 \mathrm{~V}$)

Additional Configuration

- Relay output (REL) configurable to be coupled with OUT1, OUT2, or the warning output.
- Selection of the pressure units (bar, Pa, or psi) in the UNIT display.
- Data restorable using the REST command.
- Selection of a 4-digit locking code (0001 to 9999) in the CODE display ($0000=$ no code).
- Simulation mode:
- Using the rotary/push button, the pressure can be simulated over the entire range ("SIM1" shown in display).
- The outputs can switch alternately ("SIM2" shown in display) in order to test the installation's reaction time in the range of from 4 times per second to once every 16 seconds (corresponding to a range of $0 . . .100 \%$).
- The LCD display's backlighting can be switched from "on continuously" ("LCD+" shown in display) to "turned off when rotary/push button not operated for $30 \mathrm{sec}{ }^{\prime \prime}$ ("LCD-" shown in display).
- Electronic drag indicator (represented in the LCD display by a dotted arrow) for indicating the max. $/ \mathrm{min}$. pressure. After pressing the rotary/push button, the user can (in the EDIT mode) read off the elapsed time (in hours; resolution: 0.01 h) between the event and the present time.

PROCESS CONNECTIONS

The device is connected to the pressure-side via a G1/2" standard manometer threaded connection or a G3/4" flush process connection (see fig. below). The geometry of the G1/2" and G3/4" connections conforms to DIN EN 837.

standard: SW27
(flush: SW32)

PRODUCT IDENTIFICATION SYSTEM

PRESSURE RANGES

Table 1. Pressure ranges, connection, and equipment of models

pressure range (bar)	type of pressure	bursting pressure (bar)	max. pressure (bar)	temperature	process connection	equipment	
				$\begin{gathered} \text { drift } \\ (\% / 10 \mathrm{~K}) \end{gathered}$		switch and transmitter	switch, transmitter, and relay
-1...+1	relative	≥ 10	6	0.3	G1/2"	PSTV01RG12S	PSTV01RG12S-R
0...0.25	relative	≥ 10	1	0.5*	G1/2"	PSTM250RG12S	PSTM250RG12S-R
0...0.4	relative	≥ 10	2	0.5*	G1/2"	PSTM400RG12S	PSTM400RG12S-R
0...0.6	relative	≥ 10	2	0.5*	G1/2"	PSTM600RG12S	PSTM600RG12S-R
0... 1	relative	≥ 10	6	0.3	G1/2"	PST001RG12S	PST001RG12S-R
0...1.6	relative	≥ 10	6	0.3	G1/2"	PST002RG12S	PST002RG12S-R
$0 . . .4$	relative	≥ 20	12	0.3	G1/2"	PST004RG12S	PST004RG12S-R
0... 10	relative	≥ 50	30	0.3	G1/2"	PST010RG12S	PST010RG12S-R
0... 25	relative	≥ 125	75	0.3	G1/2"	PST025RG12S	PST025RG12S-R
0... 60	relative	≥ 300	180	0.3	G1/2"	PST060RG12S	PST060RG12S-R
0... 100	relative	≥ 500	300	0.3	G1/2"	PST100RG12S	PST100RG12S-R
0... 250	relative	≥ 1600	500	0.3	G1/2"	PST250RG12S	PST250RG12S-R
0... 600	relative	≥ 1800	1000	0.3	G1/2"	PST600RG12S	PST600RG12S-R
-1...+1	relative	≥ 10	6	0.3	G3/4"	PSTV01RG34F	PSTV01RG34F-R
0...0.25	relative	≥ 10	1	0.5*	G3/4"	PSTM250RG34F	PSTM250RG34F-R
0...0.4	relative	≥ 10	2	0.5*	G3/4"	PSTM400RG34F	PSTM400RG34F-R
0...0.6	relative	≥ 10	2	0.5*	G3/4"	PSTM600RG34F	PSTM600RG34F-R
0... 1	relative	≥ 10	6	0.3	G3/4"	PST001RG34F	PST001RG34F-R
0...1.6	relative	≥ 10	6	0.3	G3/4"	PST002RG34F	PST002RG34F-R
$0 . .4$	relative	≥ 20	12	0.3	G3/4"	PST004RG34F	PST004RG34F-R
0... 10	relative	≥ 50	30	0.3	G3/4"	PST010RG34F	PST010RG34F-R
0... 25	relative	≥ 125	75	0.3	G3/4"	PST025RG34F	PST025RG34F-R
0... 2	absolute	≥ 10	6	0.3	G1/2"	PST002AG12S	PST002AG12S-R
0... 10	absolute	≥ 50	30	0.3	G1/2"	PST010AG12S	PST010AG12S-R
0... 2	absolute	≥ 10	6	0.3	G3/4"	PST002AG34F	PST002AG34F-R
0... 10	absolute	≥ 50	30	0.3	G3/4"	PST010AG34F	PST010AG34F-R

NOTE*: Due to their design, depending upon their installation orientation, the weight of the diaphragm and of the filling medium in the sensors of the PSTM... series can have an effect on measurement values of up to 0.5% FS. The devices are all calibrated in the vertical position; in other orientations, deviations in measurement values are therefore possible. For this reason, vertical installation (i.e. with the device positioned vertically above the connection pipe) is to be preferred. In the event that devices of the PSTM... series are installed in a horizontal position, they can be zeroed using the integrated zeroing function ("SET0" shown in the display) prior to initial operation.

OVERVIEW OF ADJUSTABLE PARAMETERS

activity／situation	LCD display shows		parameters adjustable in	
	symbols	digital values／text	basic mode	expert mode
Current Pressure Is Displayed ${ }^{1}$				
current pressure	MIIMIIIMIIIIMIIII，unit	digital value	－	－
SP［RP］of OUT1	OUT1	－	－	－
SP［RP］of OUT2	OUT2	－	－	－
AOUT（pressure betw．ZERO \＆FSO）	AOUT	－	－	－
pressure is rising	，	－	－	－
pressure is dropping	4	－	－	－
warning	WARN	digital value	NO	NO
Parameterizing Output 1 ［Output 2］				
SP	I，OUT1［OUT2］，SP	digital value	YES	NO
RP	I，OUT1［OUT2］，RP	digital value	YES	NO
first limit of window（WIN）	I，OUT1［OUT2］，SP	digital value	YES	NO
second limit of window（WIN）	I，OUT1［OUT2］，RP	digital value	YES	NO
Configuring Output 1 ［Output 2］				
max．pressure monitor（SP＞RP）	EXPERT，SP，RP，III）	OUT1［OUT2］	NO	YES
min．pressure monitor（SP＜RP）	EXPERT，SP，RP， 1 III	OUT1［OUT2］	NO	YES
window monitor（WIN）	EXPERT，WIN	OUT1［OUT2］	NO	YES
output 2 as WARN	EXPERT，WARN	OUT2	NO	YES
N－C low－side output 1 ［2］，OC ${ }^{2}$	EXPERT，乙－，ZERO	FCT1［FCT2］	NO	YES
N－O low－side output 1 ［2］， OC^{2}	EXPERT，－＿ZERO	FCT1［FCT2］	NO	YES
N －C high－side output 1 ［2］， OC^{2}	EXPERT，乙－，FSO	FCT1［FCT2］	NO	YES
N－O high－side output 1 ［2］，OC ${ }^{2}$	EXPERT，＿工，FSO	FCT1［FCT2］	NO	YES
output 1 ［2］as＂push－pull＂	EXPERT，－＿，ZERO，FSO	FCT1［FCT2］	NO	YES
output 1 ［2］as inverted＂push－pull＂	EXPERT，\sim－，ZERO，FSO	FCT1［FCT2］	NO	YES
Parameterizing the Analog Output				
first limit（ZERO）of range	I，AOUT，ZERO	digital value	YES	NO
second limit（FSO）of range	I，AOUT，FSO	digital value	YES	NO
Configuring the Analog Output				
0 ．．． 10 V voltage－controlled output	EXPERT，AOUT	FCTV	NO	YES
$10 . . .0 \mathrm{~V}$ voltage－controlled output	EXPERT，AOUT，INV \triangle	FCTV	NO	YES
4．．． 20 mA current－control output	EXPERT，AOUT	FCTA	NO	YES
20．．． 4 mA current－control output	EXPERT，AOUT，INV \triangle	FCTA	NO	YES
Configuring the Relay				
relay coupled with output 1	EXPERT，OUT1	REL	NO	YES
relay coupled with output 2	EXPERT，OUT2	REL	NO	YES
relay configured as alarm output	EXPERT，WARN	REL	NO	YES
Configuring Unit				
unit	EXPERT，Pa／bar／psi	UNIT	NO	YES
Parameterizing Filter				
attenuation	I，ATT，\％	digital value or OFF	YES	NO
Locking／Unlocking Device Using a Code				
unlocked（code＝0000）	－	EXP	YES	NO
locked（code $=0000$ ）	－	CODE，digital value	YES	NO
Changing Code				
device is locked	EXPERT	LOCK	NO	YES
device is unlocked	EXPERT	CODE	NO	YES
${ }^{1}$ The same symbols appearing in the expert mode are also visible in the user mode，where they indicate the current configuration of the given output．Exceptions：If an output has been configured to act as a max．／min．monitor，in the user mode， \boldsymbol{l} and $\mathbf{~}$ appear instead of $\boldsymbol{I I I}$ and $\mathbf{I I I}$ ． ${ }^{2}$ Open－Collector				

OVERVIEW OF ADJUSTABLE PARAMETERS (CONTINUED)

activity / situation	LCD display shows		parameters adjustable in	
	symbols	digital values / text	basic mode	expert mode
Locking the expert mode separately (just after switching-on the device, press the rotary/push button until "V..." appears in the display)				
expert mode locked	EXPERT; EDIT	EXPL	NO	YES
expert mode unlocked	EXPERT, EDIT	EXPN	NO	YES
Resetting the display lighting				
on continuously	EXPERT	LED+	NO	YES
turned off	EXPERT	LED-	NO	YES
Electronic max./min. indicator				
pressure exceeds fixed value	III)	digital value, unit	YES	NO
pressure exceeds fixed duration	IIIP, EDIT, h	digital value in $\mathrm{x} . \mathrm{xx} \mathrm{h}$	YES	NO
pressure drops below fixed value	1111	digital value, unit	YES	NO
pressure drops below fixed duration	4III, EDIT, h	digital value in $\mathrm{x} . \mathrm{xx} \mathrm{h}$	YES	NO
storage reset	4III, IIII, EDIT	RSET	YES	NO
Zeroing sensor (just after switching-on the device, press the rotary/push button until "V..." appears in the display)				
selection of zeroing function	EXPERT	SETO	NO	YES
zeroing	EXPERT, EDIT, unit	digital value	NO	YES
Simulation mode				
no simulation mode	EXPERT,	SIM-	NO	YES
activate pressure simulation	EXPERT,	SIM1	NO	YES
activate switch simulation	EXPERT, EDIT	digital value, SIM2	NO	YES
execute pressure simulation	HIIIIIIIIIIIIIIIIIEDIT	digital value	YES	NO
execute switch simulation	I, \%	digital value	YES	NO

FEMA Controls

Honeywell AG

Böblinger Str. 17
D-71101 Schönaich
Phone: (49) 7031-637-02
Fax: (49) 7031-637-850
http://honeywell.de/fema

