Conductors and Cables

Technical Data

Introduction

NOTE: Unless noted otherwise, all conductors and cables are UL Listed.

This sheet lists Honeywell conductors and cables according to use. Conductors and cables listed here are suitable for use under any appropriate NEC Articles, including:

- 725: Class 1, Class 2, and Class 3 Remote-Control, Signaling, and Power-Limited Circuits
- 760: Fire Protective Signaling Systems
- 800: Communications Circuits

Conductors

Twisted Pair(s) and Triplets

AK3702, AK3703, AK3712, AK3713, AK3754
(Table 1).

Single Conductors

AK3907, AK3908, AK3909, AK3910, AK3911 (Table 1).
Back-plane wire CCT3901 (Table 1).

Cables

Twisted Pair(s) and Triplets

AK3724, AK3726, AK3741A AK3743A AK3749A, AK3750A, AK3751A, AK3752A, AK3781, AK3782 (Table 1).

Twisted Pair(s), Shielded
AK3740A, AK3742A (Table 1).

Intercom Cables

Microphone-type cable for trunk and local intercom uses and electronic temperature-control systems.

AK3602G, AK3603G (Table 1).

Plenum Cables

TWISTED PAIR(S) AND TRIPLETS

Classified as fire-resistant and low-smoke-producing. Suitable for use in ducts, hollow spaces, and plenums.

AK3744C, AK3745C, AK3746C, AK3747C, AK3748C, AK3757C AK3791, AK3792 (Table 1).

SHIELDED PLENUM CABLE

AK3721B (Table 1).

Triaxial Cables

AK3605 (Table 2)

OTHER CABLES

AK3711A - Microcel Bus Cable - Plenum

Consists of two \#14 AWG parallel conductors and one twisted 18 AWG pair. Foamed FPR (Flourocopolymer resin) insulation, Low Smoke, Low Flame plenum rated jacket.

AK3608B

Consists of one each AK3702R, AK3702BB, and AK3602G cables wrapped with a PVC jacket. Suitable for indoor exposed wiring (Table 1).

AK3609A (Direct Burial)

Consists of one each AK3702R, AK3702BB, and AK3602G cables wrapped with a corrugated copper rodent barrier and a direct burial jacket (Table 1). Suitable for all below-grade installations and outside aerial applications AK3609A is not UL Listed.

Specifications Tables

NOTE All wiring must be done in accordance with local codes, ordinances, and regulations.

Tables 1 and 2 provide conductor and cable specifications as follows:

- Table 1, Conductors and Cables
- Table 2, Coaxial and Triaxial Cables

Table 1. Conductors and Cables.

Honeywell Part No. (1)	$\begin{aligned} & \text { UL/ } \\ & \text { NEC } \end{aligned}$	AWG (Strand -ing) (2)	No. of Conductors	Lay of Twist	Nominal Capacitance pF/ft (pF / m)	Resistance Per Conductor $\Omega / 1000 \mathrm{ft}$ (Ω / km)	Conductor Insulation In. (mm)	Shield	Jacket Insulation In. (mm)	$\begin{aligned} & \text { O.D. } \\ & \text { In. } \\ & \text { (mm) } \end{aligned}$	Conductor Color	Voltage Rating (V)	Temper- ature Rating C (F)	Weight Per 1000 ft (lb) (per 305 m [kg])	Maximu m Pull Tension lb (N)
AK3740A	FPLR CMR	18	1 Pair	2-1/2 in.	$\begin{gathered} 22 \\ (72) \end{gathered}$	6.5 (21.3)	$\begin{gathered} \hline \text { PVC } \\ 0.010(0.3) \end{gathered}$	Alum-Mylar* with 20 AWG Drain Wire	$\begin{gathered} \hline \text { PVC Red } \\ 0.020(0.5) \end{gathered}$	$\begin{aligned} & \hline 0.163 \\ & (4.1) \end{aligned}$	RED, YEL	300	$\begin{gathered} \hline 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} 31 \\ (14.2) \end{gathered}$	$\begin{gathered} 26 \\ (115.4) \end{gathered}$
AK3741A	$\begin{aligned} & \hline \text { FPLR } \\ & \text { CMR } \\ & \hline \end{aligned}$	18	1 Pair	3 in.	$\begin{gathered} 19 \\ (62.1) \\ \hline \end{gathered}$	6.5 (21.3)	$\begin{gathered} \hline \text { PVC } \\ 0.010(0.3) \end{gathered}$	None	$\begin{gathered} \text { PVC Red } \\ 0.022(0.55) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.164 \\ (4.1) \\ \hline \end{gathered}$	RED, YEL	300	$\begin{gathered} 60 \mathrm{C} \\ (140 \mathrm{~F}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ (9.5) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (115.4) \\ \hline \end{gathered}$
AK3742A	$\begin{aligned} & \hline \text { FPLR } \\ & \text { CMR } \end{aligned}$	18	2 Pairs	2-1/2 in.	$\begin{gathered} 22 \\ (72) \end{gathered}$	6.5 (21.3)	$\begin{gathered} \hline \text { PVC } \\ 0.010(0.3) \end{gathered}$	Alum-Mylar* with 20 AWG Drain Wire	$\begin{gathered} \hline \text { PVC Red } \\ 0.027(0.68) \end{gathered}$	$\begin{aligned} & 0.27 \\ & (6.9) \end{aligned}$	RED, YEL, BLK, BLU	300	$\begin{gathered} \hline 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} 45 \\ (20.5) \end{gathered}$	$\begin{gathered} 52 \\ (230.9) \end{gathered}$
AK3743A	$\begin{aligned} & \hline \text { FPLR } \\ & \text { CMR } \end{aligned}$	18	2 Pairs	3 in.	$\begin{gathered} 22 \\ (72) \end{gathered}$	6.5 (21.3)	$\begin{gathered} \hline \text { PVC } \\ 0.010(0.3) \end{gathered}$	None	PVC Red $0.027(0.68)$	$\begin{gathered} \hline 0.264 \\ (6.7) \end{gathered}$	$\begin{aligned} & \hline \text { RED, YEL, } \\ & \text { BLK, BLU } \end{aligned}$	300	$\begin{gathered} \hline 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} \hline 42 \\ (19.1) \end{gathered}$	$\begin{gathered} 52 \\ (230.9) \end{gathered}$
AK3744C	$\begin{gathered} \text { FPLP, CMP, } \\ \text { MPP } \end{gathered}$	18	1 Pair	6 in.	$\begin{gathered} 15.5 \\ (50.84) \\ \hline \end{gathered}$	6.39 (21)	$\begin{aligned} & \text { Foamed FPR } \\ & 0.009(0.22) \\ & \hline \end{aligned}$	None	$\begin{gathered} \text { FPR Red } \\ 0.016(0.4) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.150 \\ & (3.8) \\ & \hline \end{aligned}$	RED, YEL	300	$\begin{gathered} 60 \mathrm{C} \\ (140 \mathrm{~F}) \\ \hline \end{gathered}$	$\begin{gathered} 28 \\ (12.7) \\ \hline \end{gathered}$	$\begin{array}{r} 25.9 \\ (115) \\ \hline \end{array}$
AK3745C	$\begin{gathered} \hline \text { FPLP, CMP, } \\ \text { MPP } \end{gathered}$	18	2 Pair	6 in.	$\begin{gathered} 15.5 \\ (50.84) \\ \hline \end{gathered}$	6.52 (21.4)	$\begin{aligned} & \hline \text { Foamed FPR } \\ & 0.009(0.22) \end{aligned}$	None	$\begin{gathered} \hline \text { FPR Red } \\ 0.018(0.5) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.220 \\ & (5.6) \\ & \hline \end{aligned}$	RED, YEL, BLK, BLU	300	$\begin{gathered} 60 \mathrm{C} \\ (140 \mathrm{~F}) \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ (16.4) \\ \hline \end{gathered}$	$\begin{array}{r} 51.8 \\ (230) \\ \hline \end{array}$
AK3746C	$\begin{gathered} \text { FPLP, CMP, } \\ \text { MPP } \end{gathered}$	18	1 Triplet	6 in.	$\begin{gathered} 15.5 \\ (50.84) \\ \hline \end{gathered}$	6.52 (21.4)	$\begin{aligned} & \hline \text { Foamed FPR } \\ & 0.009(0.22) \end{aligned}$	None	$\begin{aligned} & \hline \text { FPR Red } \\ & 0.016(0.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.157 \\ & (4.0) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { RED, YEL, } \\ \text { BLU } \\ \hline \end{gathered}$	300	$\begin{gathered} \hline 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} 26 \\ (11.8) \end{gathered}$	$\begin{gathered} \hline 38.9 \\ (172.7) \\ \hline \end{gathered}$
AK3747C	$\begin{gathered} \text { FPLP, } \\ \text { CL3P, MPP } \end{gathered}$	14	1 Pair	6 in.	$\begin{gathered} 21 \\ (68.9) \end{gathered}$	2.57 (8.4)	$\begin{aligned} & \hline \text { Foamed FPR } \\ & 0.013(0.33) \end{aligned}$	None	$\begin{aligned} & \hline \text { FPR Red } \\ & 0.016(0.4) \end{aligned}$	$\begin{aligned} & 0.212 \\ & (5.4) \end{aligned}$	RED, YEL	300	$\begin{gathered} 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} 43 \\ (19.5) \end{gathered}$	$\begin{gathered} 65.7 \\ (291.7) \end{gathered}$
AK3748C	$\begin{gathered} \text { FPLP, } \\ \text { CL3P, MPP } \end{gathered}$	14	1 Triplet	6 in.	$\begin{gathered} 21 \\ (69.9) \end{gathered}$	2.57 (8.4)	$\begin{aligned} & \hline \text { Foamed FPR } \\ & 0.013(0.33) \\ & \hline \end{aligned}$	None	$\begin{aligned} & \hline \text { FPR Red } \\ & 0.016(0.4) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (8.4) \end{aligned}$	$\begin{gathered} \hline \text { RED, YEL, } \\ B L U \\ \hline \end{gathered}$	300	$\begin{gathered} 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} 60 \\ (27.3) \\ \hline \end{gathered}$	$\begin{gathered} 98.6 \\ (437.8) \end{gathered}$
AK3749A	$\begin{aligned} & \text { FPLR } \\ & \text { CMR } \end{aligned}$	18	1 Triplet	4 in.	$\begin{gathered} 22 \\ (72) \\ \hline \end{gathered}$	6.52 (21.4)	$\begin{gathered} \text { PVC } \\ 0.010(0.3) \end{gathered}$	None	PVC Red 0.018 (0.5)	$\begin{aligned} & 0.166 \\ & (4.2) \\ & \hline \end{aligned}$	$\begin{gathered} \text { RED, YEL, } \\ \text { BLU } \end{gathered}$	300	$\begin{gathered} 60 \mathrm{C} \\ (140 \mathrm{~F}) \\ \hline \end{gathered}$	$\begin{gathered} 26 \\ (11.8) \\ \hline \end{gathered}$	$\begin{gathered} 38.9 \\ (172.7) \\ \hline \end{gathered}$
AK3750A	$\begin{aligned} & \hline \text { FPLR } \\ & \text { CMR } \\ & \hline \end{aligned}$	16	1 Pair	4 in.	$\begin{gathered} 35 \\ (114.8) \end{gathered}$	4.1 (13.5)	$\begin{gathered} \hline \text { PVC } \\ 0.012(0.3) \end{gathered}$	None	$\begin{aligned} & \hline \text { PVC Red } \\ & 0.020(0.5) \end{aligned}$	$\begin{gathered} 0.195 \\ (5) \\ \hline \end{gathered}$	RED, YEL	300	$\begin{gathered} \hline 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} 27 \\ (12.3) \end{gathered}$	$\begin{gathered} \hline 41.3 \\ (183.4) \end{gathered}$
AK3752A	$\begin{aligned} & \hline \text { FPLR } \\ & \text { CL3R } \end{aligned}$	14	1 Pair	4 in.	$\begin{gathered} 35 \\ (114.8) \\ \hline \end{gathered}$	2.57 (8.4)	$\begin{gathered} \text { PVC } \\ 0.014(0.4) \end{gathered}$	None	$\begin{aligned} & \hline \text { PVC Red } \\ & 0.018(0.5) \end{aligned}$	$\begin{gathered} \hline 0.226 \\ (5.7) \\ \hline \end{gathered}$	RED, YEL	300	$\begin{gathered} 60 \mathrm{C} \\ (140 \mathrm{~F}) \\ \hline \end{gathered}$	$\begin{gathered} 40 \\ (18.1) \end{gathered}$	$\begin{gathered} 65.7 \\ (291.7) \end{gathered}$
$\begin{aligned} & \hline \text { AK3754 } \\ & \text { B,R,N,P } \end{aligned}$	TFN	14	1 Pair	2 to 4 in	$\begin{gathered} 25 \\ (82) \end{gathered}$	2.57 (8.4)	$\begin{gathered} \hline \text { TFN } \\ 0.019(0.38) \end{gathered}$	None	None	$\begin{aligned} & \hline 0.224 \\ & (5.7) \end{aligned}$	(5)	600	$\begin{gathered} 90 \mathrm{C} \\ (194 \mathrm{~F}) \end{gathered}$	37 (16.8)	25.9 (115)
AK3757C	$\begin{gathered} \hline \text { FPLP, CMP, } \\ \text { MPP } \end{gathered}$	18	1 Pair	6 in.	$\begin{gathered} 15.5 \\ (50.84) \end{gathered}$	6.39 (21)	$\begin{aligned} & \hline \text { Foamed FPR } \\ & 0.009(0.22) \end{aligned}$	None	FPR White 0.016 (0.4)	$\begin{aligned} & \hline 0.150 \\ & (3.8) \end{aligned}$	RED, YEL	300	$\begin{gathered} \hline 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} \hline 28 \\ (12.7) \end{gathered}$	$\begin{gathered} \hline 25.9 \\ (115) \end{gathered}$
AK3781	CMR	22	1 Pair	2 to 4 in	$\begin{gathered} 14 \\ (45.92) \\ \hline \end{gathered}$	16.2 (53.2)	$\begin{aligned} & \hline \text { Foamed FPR } \\ & 0.006(0.2) \\ & \hline \end{aligned}$	None	FPR White $0.010(.25)$	$\begin{aligned} & 0.116 \\ & (2.94) \\ & \hline \end{aligned}$	Blue-Whitel/Bue	300	$\begin{gathered} 60 \mathrm{C} \\ (140 \mathrm{~F}) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (4.54) \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ (55.5) \\ \hline \end{gathered}$
AK3782	CMR	22	2 Pair	2 to 4 in	$\begin{gathered} 14 \\ (45.92) \end{gathered}$	16.2 (53.2)	$\begin{aligned} & \hline \text { Foamed FPR } \\ & 0.006(0.2) \end{aligned}$	None	$\begin{aligned} & \hline \text { FPR White } \\ & 0.010(.25) \end{aligned}$	$\begin{aligned} & \hline 0.181 \\ & (4.59) \end{aligned}$	$\begin{gathered} \text { Bhlue- } \\ \begin{array}{c} \text { WhitelBlue, } \\ \text { Orange- } \\ \text { WhitelOrange } \end{array} \\ \hline \end{gathered}$	300	$\begin{gathered} \hline 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} 16 \\ (7.26) \end{gathered}$	$\begin{gathered} 17 \\ (75.5) \end{gathered}$
AK3791	CMP	22	1 Pair	2 to 4 in	$\begin{gathered} 14 \\ (45.92) \\ \hline \end{gathered}$	16.2 (53.2)	$\begin{gathered} \text { FEP } \\ 0.006(0.2) \end{gathered}$	None	$\begin{aligned} & \text { FPR Gray } \\ & 0.010(.25) \end{aligned}$	$\begin{aligned} & 0.116 \\ & (2.94) \\ & \hline \end{aligned}$	Blue-Whitel/Blue	300	$\begin{gathered} 60 \mathrm{C} \\ (140 \mathrm{~F}) \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (4.54) \end{gathered}$	$\begin{gathered} 14.5 \\ (64.4) \\ \hline \end{gathered}$
AK3792	CMP	22	2 Pair	2 to 4 in	$\begin{gathered} 14 \\ (45.92) \end{gathered}$	16.2 (53.2)	$\begin{gathered} \text { FEP } \\ 0.006(0.2) \end{gathered}$	None	$\begin{aligned} & \hline \text { FPR Gray } \\ & 0.010(.25) \end{aligned}$	$\begin{aligned} & \hline 0.181 \\ & (4.59) \end{aligned}$	$\begin{gathered} \text { Blue- } \\ \text { White/Blue, } \\ \text { Orange- } \\ \text { White/Orange } \end{gathered}$	300	$\begin{gathered} \hline 60 \mathrm{C} \\ (140 \mathrm{~F}) \end{gathered}$	$\begin{gathered} 16 \\ (7.26) \end{gathered}$	$\begin{gathered} 20 \\ (88.8) \end{gathered}$

Honeywell Part No. (10)		AWG (Strand -ing) (2)	No. of Conductors	Lay of Twist	Nominal Capacitance $\mathrm{pF} / \mathrm{ft}$ (pF / m)	Resistance Per Conductor $\Omega / \mathbf{1 0 0 0} \mathbf{f t}$ (Ω / km)	Conductor Insulation In. (mm)	Shield	Jacket Insulation In. (mm)	$\begin{aligned} & \text { O.D. } \\ & \text { In. } \\ & \text { (mm) } \end{aligned}$	Conductor Color	Volt- age Rating (V)	Temper- ature Rating C (F)	Weight Per 1000 ft (lb) (per 305 m [kg])	Maximu m Pull Tension lb (N)
AK3907	THHN	12	1	N/A	N/A	1.62 (5.3)	$\begin{gathered} \hline \text { TFN } \\ 0.019(0.38) \end{gathered}$	None	None	$\begin{aligned} & \hline 0.13 \\ & (3.3) \\ & \hline \end{aligned}$	(8)	600	$\begin{gathered} 90 \mathrm{C} \\ (194 \mathrm{~F}) \\ \hline \end{gathered}$	24 (10.9)	N/A
AK3908	THHN	$\begin{gathered} 12 \\ 19 \text { Strands } \end{gathered}$	1	N/A	N/A	1.62 (5.3)	$\begin{gathered} \text { TFN } \\ 0.019(0.38) \end{gathered}$	None	None	$\begin{array}{r} 1.14 \\ (3.6) \\ \hline \end{array}$		600	$\begin{gathered} 90 \mathrm{C} \\ (194 \mathrm{~F}) \\ \hline \end{gathered}$	25 (11.4)	N/A
AK3909	THHN	14	1	N/A	N/A	2.57 (8.4)	$\begin{gathered} \hline \text { TFN } \\ 0.019(0.38) \\ \hline \end{gathered}$	None	None	$\begin{aligned} & 0.11 \\ & (2.8) \\ & \hline \end{aligned}$	8)	600	$\begin{gathered} \hline 90 \mathrm{C} \\ (194 \mathrm{~F}) \\ \hline \end{gathered}$	16 (7.3)	N/A
AK3910	THHN	$\begin{gathered} 14 \\ 19 \text { Strands } \end{gathered}$	1	N/A	N/A	2.57 (8.4)	$\begin{gathered} \text { TFN } \\ 0.019(0.38) \\ \hline \end{gathered}$	None	None	$\begin{aligned} & 0.12 \\ & (3.0) \\ & \hline \end{aligned}$		600	$\begin{gathered} 90 \mathrm{C} \\ (194 \mathrm{~F}) \\ \hline \end{gathered}$	17 (7.7)	N/A
AK3911	THHN	$\begin{gathered} 16 \\ 19 \text { Strands } \end{gathered}$	1	N/A	N/A	4.1 (13.5)	$\begin{gathered} \hline \text { TFN } \\ 0.019(0.38) \end{gathered}$	None	None	$\begin{aligned} & \hline 0.09 \\ & (2.3) \end{aligned}$		600	$\begin{gathered} 90 \mathrm{C} \\ (194 \mathrm{~F}) \end{gathered}$	12 (5.4)	N/A
CCT3901	N/A	26	1	N/A	N/A	42.7 (140.1)	0.0055 (0.14)	None	None	$\begin{aligned} & \hline 0.027 \\ & (0.7) \\ & \hline \end{aligned}$	WHT	N/A	$\begin{aligned} & 105 \mathrm{C} \\ & (221 \mathrm{~F}) \end{aligned}$	1.5 (0.7)	N/A

NOTES: (1) All ordered directly from Paige Electric - 1-800-677-2443
(2) All solid conductors unless otherwise noted
(3)

Temperature Range C (F)	Limits of Error Standard
-101 to $-59 \mathrm{C}(-150$ to $-75 \mathrm{~F})$	$\pm 2 \%$
-59 to $93 \mathrm{C} \quad(-75$ to 200 F$)$	$\pm 1.5 \mathrm{~F}$
93 to $371 \mathrm{C}(200$ to 700 F$)$	$\pm 0.75 \%$

(4)

(5)

Suffix	Base	Mate
B	YEL	BRN
R	YEL	RED
N	YEL	ORG
P	YEL	VIO
BR	BLK	RED
BB	BLK	BLU

(6)

Suffix	Base $\boldsymbol{\# 1}$	Base $\boldsymbol{\# 2}$	Mate
B	YEL	BLU	BRN
R	YEL	BLU	RED
N	YEL	BLU	ORG
P	YEL	BLU	VIO

(7) YEL

VIO
YEL and BRN
VIO and BLK
(8) Separate colors:

BLU, ORG
RED, TAN,
VIO, GRAY,
BRN, GRN,
BLK, WHT,
YEL, or PINK.
(9) All cables packaged in standard 1000 ft
(304.8 m) rolls except for AK3608, AK3609, and CCT3901, which are packaged as specified on order.
(10) Order from local supplier.

Honeywell Part No. (1)	AWG (Stranding) (2)	Conduc- tors In. (mm)	Core Insulation In	Conductor Insulation In. (mm)	Number of Shields/Material	Shield Coverage	Nominal In. (mm)	Jacket Insulation In. (mm)	Tem- perature Rating C Rating (F)	Weight Per 1000 ft (b) (per 305 m [kg]	$\begin{array}{\|c\|} \hline \text { Maxi- } \\ \text { mum } \\ \text { Pull } \\ \text { Tension } \\ \text { lb (N) } \\ \hline \end{array}$	Resistance Per Conductor $\Omega / \mathbf{1 0 0 0} \mathbf{~ f t ~}$ $(\Omega / \mathbf{k m})$ $13(\Omega 2)$	Nominal Impedance ($\Omega)$	Nominal Capac-itance pF/ft (pF / m)	$\begin{aligned} & \text { Nominal } \\ & \text { Propagation } \\ & \text { Velocity } \end{aligned}$	Shield DC Resistance $\Omega / 1000 \mathrm{ft}$ (Ω / km)	Volt-age Rating (V)	$\begin{aligned} & 100 \% \\ & \text { sweep } \\ & \text { Tested } \\ & \hline \end{aligned}$
AK3605	18 16 Strands (16×30)	Triax	N/A		Alum-Mylar* with 4-24 AWG Tinned Cooper Drain Wires	N/A	$\begin{aligned} & 0.32 \\ & (8.1) \end{aligned}$	$\begin{aligned} & \hline \text { PVC Black } \\ & 0.04 \text { (1.02) } \end{aligned}$	$\begin{gathered} -20 \text { to } 80 \mathrm{C} \\ (-4 \text { to } 176 \mathrm{~F}) \end{gathered}$	60 (27)	$\begin{gathered} 40 \\ (178) \end{gathered}$	13 (42.7)	50	28.5 (93.5)	N/A	N/A	300	N/A

* Trademark of DuPont Company (2)AU solid conductors unless otherwise noted.

Determining Conduit Size

The appropriate conduit size is determined by first calculating the total cross-sectional area of the conductors required. Table 3 lists the conduit's inside diameter and equivalent crosssectional area. The conduit's fill factor must also be considered. The conduit fill factor percentage is 53 percent for one conductor, 31 percent for two conductors, and 40 percent for more than two conductors.

Use Tables 1 through 3 and the following formula to determine the outside diameter of each conductor, the total cross-sectional area for the conductors, the conduit fill factor, and the conduit size required for the conductors.

$$
\mathbf{A C}=\left(\mathrm{NA}_{\mathrm{W} 1}+\mathbf{N} \mathrm{A}_{\mathrm{W} 2}+\mathbf{N} \mathbf{A}_{\mathrm{W} 3}+\ldots+\mathbf{N} \mathbf{A}_{\mathrm{WN}}\right) \div \mathbf{F}
$$

Where:

O.D. = Outside Diameter
$\mathrm{A}_{\mathrm{W}}=$ Cross-sectional area (in square inches) of a given conductor including insulation
$\mathrm{N}=\quad$ Number of conductors of a given crosssectional area
$\mathrm{A}_{\mathrm{C}}=$ Total Conductor cross-sectional area (in square inches)
F $\quad=\quad$ Fill factor, in decimals. The conduit fill factor percentage is 53 percent (0.51) for one conductor, 31 percent (0.31) for two conductors, and 40 percent (0.4) for more than two conductors.

EXAMPLE: Four AK3702 and seven AK3712 cables need to be run in what size conduit?

Where:
AK3702 O.D. $=0.172$ in. (from Table 1)
AK3712 O.D. $=0.194$ in. (from Table 1)

Cross-sectional area $=\pi$ (O.D. +2$)^{2}$
Cross-sectional area of AK3702 $=\mathrm{A}_{\mathrm{Wl}}$ $\mathrm{A}_{\mathrm{Wl}}=3.14 \times(0.172 \div 2)^{2}=0.023$ square inches
Cross-sectional area of AK3712 = A ${ }_{\text {W2 }}$ $\mathrm{A}_{\mathrm{W} 2}=3.14 \times(0.194 \div 2)^{2}=0.03$ square inches

Fill factor for more than two conductors $(\mathrm{F})=40 \%=0.4$
Then:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{C}}=\left[\left(\mathrm{NA}_{\mathrm{W} 1}\right)+\left(\mathrm{NA}_{\mathrm{W} 2}\right)\right] \div \mathrm{F} \\
& \mathrm{~A}_{\mathrm{C}}=[(4 \times 0.023)+(7 \times 0.03)] \div 0.4 \\
& \mathrm{~A}_{\mathrm{C}}=0.755 \text { square inches }
\end{aligned}
$$

From Table 3 (Internal Area in Square Inches column), select the conduit size with the internal area in square inches closest, but larger than, 0.755 square inches. The table indicates that a 1 -in. rigid (0.864 square inches) or flexible conduit (0.785 square inches) is required for the cable mn .

NOTE: For additional information and examples, refer to NEC Chapter 9 and the NEC Handbook.

Table 3. Electrical Conduit, Inside Diameter and Cross-Sectional Area.

	Rigid Conduit or Tubing		Flexible Conduit	
Conduit Trade Size	Internal Diameter in Inches	Internal Area in Square Inches	Internal Diameter in Inches (Nominal)	Square Inches (Nominal)
$3 / 8$	N/A	N/A	0.375	0.110
$1 / 2$	0.622	0.304	0.625	0.307
$3 / 4$	0.824	0.533	0.8125	0.518
1	1.049	0.864	1.00	0.785
$1-1 / 4$	1.380	1.496	1.250	1.227
$1-1 / 2$	1.610	2.036	1.500	1.767
2	2.067	3.356	2.00	3.142
$2-1 / 2$	2.469	4.788	2.500	4.909
3	3.068	7.393	3.00	7.069
$3-1 / 2$	3.548	9.887	3.500	9.621
4	4.026	12.730	4.000	12.566
$4-1 / 2$	4.506	15.946	$\mathrm{~N} / \mathrm{A}$	N / A
5	5.047	20.005	N/A	N/A
6	6.065	28.890	$\mathrm{~N} / \mathrm{A}$	N/A

Home and Building Control	Home and Building Control	Helping You Control Your World
Honeywell Inc.	Honeywell Limited-Honeywell Limitée	
Honeywell Plaza	740 Ellesmere Road	
P.O. Box 524	Scarborough, Ontario	
Minneapolis, MN 55408-0524	M1P 2V9	
$74-1877$	MLF TAB: III.B.2	Rev. 4-92

